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Summary. This paper presents work on sensor-based motion planning in initially
unknown dynamic environments. Motion detection and probabilistic motion model-
ing are combined with a smooth navigation function to perform on-line path planning
and replanning in cluttered dynamic environments such as public exhibitions. The
SLIP algorithm, an extension of Iterative Closest Point, combines motion detection
from a mobile platform with position estimation. This information is then processed
using probabilistic motion prediction to yield a co-occurrence risk that unifies dy-
namic and static elements. The risk is translated into traversal costs for an E∗ path
planner. It produces smooth paths that trade off collision risk versus detours.

1 Introduction

Path planning in a-priori unknown environments cluttered with dynamic ob-
jects is a field of active research. It can be addressed by using explicit time
representation to turn the problem into an equivalent static problem, which
can then be solved with an existing static planner. However, this increases the
dimensionality of the representation and requires exact motion models for sur-
rounding objects. The dimensionality increase raises the computational effort
(time and memory) to produce a plan, and motion modeling raises difficult
prediction issues (computationally expensive, hard to foresee the long-term
evolution of real-world environments). Motion prediction becomes even more
problematic in the presence of humans, and the robot is usually required to
react swiftly rather than optimally. In other words: the time required to com-
pute the plan becomes part of the optimality criterion applied to the plan.

Human behavior is unforeseeable in most situations that include human-
robot interaction. As service robots or robotic companions are a highly promis-
ing application area, we actively research on-line path planning in environ-
ments with up to several hundred humans, as shown in figure 1. Relying on
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Fig. 1. Expo.02 was a very crowded environment. The unpredictable behavior of
humans and its dependence on the robot’s actions make this a challenging real-world
setting.

sensor-based motion modeling is crucial for correctly grounding the robot’s
plan. We do not try to explicitly model object and robot movements with
a time-extended representation, as such complete knowledge is usually not
available in the targeted applications: if the humans surrounding the robot
do not know where they will be going, how can the robot be expected to
incorporate such knowledge during path planning?

1.1 Approach and Contribution

Figure 2 illustrates the problem statement we propose to solve with the Prob-
abilistic Navigation Function (PNF), with the following objectives in mind:

• Avoid basing the plan on invalid assumptions. Instead, use closely sensor-
based environment and object models. We identify two main reasons why
models can be inappropriate: they might not correspond to the observed
movements (humans rarely move with constant velocity along straight
lines), or they can be hard to ground (determining model parameters by
observation). The co-occurrence estimation underlying the PNF is based
on few parameters that can be quickly and robustly extracted from sensory
data.

• Avoid the large number of dimensions that would be required for full-
fledged ST (state×time space) planning [5,6]. We use worst-case scenarios
to keep the dimensionality low. While this implies that no strict avoidance
guarantees can be made, we have argued above that the required models
would not be available for the target applications.
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Fig. 2. The Probabilistic Navigation Function PNF was developed to solve the
problem sketched in this diagram: plan a path from robot to goal that strikes a
balance between the accumulated risk and the detours necessary to avoid dangerous
regions. The risk is based on co-occurrence probabilities Pc,i between the robot
and each moving object. Pc,i is estimated by taking into account static obstacles,
approximated robot and object shapes, as well as maximum speeds. As indicated in
this figure, the shortest admissible path from each object to the region of interest is
used as worst-case estimate in order to avoid the very large number of dimensions
that would be required for a ST space planning approach.

• Interweave planning and execution. This requires fast (re)planning and
a flexible interface to motion control. By performing most computations
in the workspace W or low-dimensional projected configuration spaces C,
planning complexity is reduced. The drawback of these speed-ups is the
lack of geometrical completeness. Interfacing motion control is done via
the steepest negative gradient of the navigation function, which is defined
in (almost) all the regions the robot might reach during its movement.

This contribution presents ongoing development of the PNF approach.
Prior work has resulted in the two main building blocks of motion detection
and smooth navigation functions. Here we concentrate on presenting the link
between the two.

To produce a smooth navigation functions (potentials with a globally
unique minimum at the goal), we rely on E∗ [13, 15], a grid-based weighted-
region planner, requiring relatively little computational overhead and being
capable of dynamic replanning in near real-time4. This is an important prop-
erty for frequently changing environment models as it limits calculations to
regions that actually influence the current plan.

On-line motion detection is performed by SLIP [8], a scan alignment
method. In order to use sensor-based motion modeling, it is of primary impor-
tance to compensate for the ego-motion of the robot. The main sensor used in
4 http://estar.sourceforge.net/
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the presented work is a laser scanner, thus motion detection requires, among
other things, a robust scan alignment method. The SLIP approach is based
on ICP [3,21] (a comparison of different variants can be found in [17]) and has
proven its robustness on sensory data taken during Expo.02, a six-month na-
tional exhibition which took place in Switzerland during the summer of 2002,
and where the Autonomous Systems Lab was present with eleven autonomous
Robox tour-guides.

The interface between these two building blocks of motion detection and
path planning is developed in the following sections. It is a probabilistic ap-
proach to estimating co-occurrence probabilities between the robot and sur-
rounding dynamic obstacles (e.g. humans, other robots), given environment
constraints and assumptions based on worst-case scenarios.

1.2 Related Work

The PNF is a navigation function, a concept of which the NF1 [11] is a clas-
sical implementation. Navigation functions are like potential fields [9], but
are guaranteed to have a unique global minimum. The PNF incorporates a
continuous risk measure of traversing regions of W, which is similar to edge
costs in graph-based planners, but is conceptually closer to weighted regions.

The weighted region path planning problem is described in [12, 16], but
instead of pre-determined regions we use a grid-based risk map. Among the
published research that incorporates environment dynamics during path plan-
ning [1, 2, 4–7, 10], most seem inappropriate for an application in highly clut-
tered dynamic environments: they either rely on information and computa-
tional resources that are not available for such unforeseeable settings (extend-
ing C to a full-fledged state-time representation [5, 6], a velocity space [4, 10],
essentially off-line movement simulations [2]), or are limited to constant veloc-
ity models [7, 20]. In [1], environment dynamics are treated using worst-case
scenarios that take into account the sensor capacities, but it treats all known
obstacle information as static during planning.

2 Algorithm Overview

The components that constitute the PNF approach are shown in figure 3.
It is based on the observation that, as static objects define the environment
topology, dynamic objects can be considered traversable if it is reasonable
to assume that a given object will not remain at its position once the robot
has moved there. The result is an approximate plan that relies on lower level
obstacle avoidance to turn it into robot movements. The PNF computes a
trade-off between the collision risk of traversing a region and the detour needed
if it was to be completely avoided. Accepting a certain collision risk is useful
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Fig. 3. Overview-diagram of the steps required for calculating the Probabilistic
Navigation Function: laser scanner data is aligned with previous scans and sepa-
rated into static and dynamic objects. Static elements are used to update the map.
Dynamic elements can be optionally tracked in order to obtain more information
such as velocity vectors. The static and dynamic information is used to calculate
co-occurrence probabilities that define a risk map, which is transformed into a nav-
igation function in the path planning step. Reactive obstacle avoidance is then used
to execute the plan, which allows to take into account the most recent scan when
determining the motor commands.

in the target application5. Otherwise, the robot would often not move at all
or replan too frequently to be useful e.g. for tour guiding in mass exhibitions.
The overall steps of the algorithm are:
Input: Laser scanner data (and odometry / localisation)
Motion detection: SLIP precisely determines the transformation between
subsequent scans, then reliably detects motion that takes into account occlu-
sion changes from a moving platform, as summarized in section 3.
Determine co-occurrence risk: Translate dynamic objects into a probabil-
ity of colliding with the given object at a given location, based on assumptions
derived from worst-case scenarios. This is presented in section 4.
Path planning: Compute a smooth navigation function using E∗, taking into
account a fusion of all co-occurrence risks. This is also presented in section 4.
Output: Direction of travel (steepest gradient) that can be fed into reactive
obstacle avoidance. This separation of path planning and execution has proven
to work well during Expo.02 [14, 18].

5 Provided that collision avoidance and other safety features of the robot perform
reliably
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(a) scan data superimposed using raw odometry

(b) the same scans after SLIP alignment

Fig. 4. Example of a scan alignment: the information obtained by raw odometry
is not suitable for motion detection. After correcting the ego-motion using SLIP,
regions of motion are now immediately apparent. The corrected robot path is shown
as a dashed line in the lower image.

3 Scan Alignment and Motion Detection

Motion can be detected as differences between successive scans, because mov-
ing objects change sensor readings. Additionally, however, differences arise
from occlusion changes due to the motion of the robot. Thus, the ego-motion
has to be compensated prior to comparing scans. SLIP performs scan match-
ing based on an initial guess from odometry, then iteratively establishes links
between points, and transforms the scans to minimise the remaining distance
between the elements. Special care has to be taken to suppress outliers, par-
ticularly from moving objects, in order to achieve a high precision. Alignment
correction is based on differences between the centers of gravity of the match-
ing point sets in both scans.
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Fig. 5. Example of a motion detection from a mobile robot, using data acquired
by the Photobot at Expo.02. This was a difficult region for localisation, producing
particularly large orientation errors when the robot rotated on the spot. Using SLIP,
the scans were aligned very precisely to allow robust motion detection (dark spots
surrounded by thin lines). Note that the map is shown for illustration only, SLIP
does not require such a-priori information.

To detect motion on aligned scans, elements without correspondence
within a defined distance (derived from the maximal localisation error) are
considered outliers. Projective filters are used to distinguish between moving
objects and occlusion changes. Non-outliers are used to create a map of the
static environment. SLIP then determines which outliers were visible from
the previous position. An example alignment result is given in figure 4. Mov-
ing elements are clustered by the well known friend-of-friends algorithm to
model dynamic objects with associated location (the center of gravity) and
size (cluster radius). An example of motion detection from a mobile robot is
shown in figure 5.

4 Planning with Estimated Risk

Conceptually, the co-occurrence models the probability that a given location
will be occupied by a static or dynamic object by the time the robot has moved
there. In principle, when all future trajectories are known, co-occurrence is a
deterministic entity. However, the robot trajectory cannot be known at the
planning stage, and the object movements are usually not available under
real-world conditions. To cope with this, we first reduce the problem to point
objects evolving in one dimension, then apply probabilistic worst-case reason-
ing to compute a co-occurrence estimate, and finally transform the W-space
information of non-point objects such that it can be fed into the 1D expres-
sions.
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Fig. 6. Co-occurrence probabilities Pc,i in the one-dimensional case. The robot is
at the origin, collisions may occur on either side of the initial robot position: objects
can catch up if they have higher speeds. Top: Four cases of dynamic object locations
and speeds are shown: objects are located at x = {−20,−5} and move with equal or
twice the speed of the robot. Bottom: The co-occurrence is adapted to the robot
and object shapes in the W transform, which computes the distance from a point
of interest to the borders of the robot and the dynamic object. In this example,
the object is located at x = −20 and moves twice as fast as the robot. A radius of
rr = ri = 4 is used.

4.1 One-Dimensional Co-Occurrence Estimation

Instead of attempting to take into account the infinite number of trajectories
that could lead to a certain region of interest R(x) at a given time, we con-
sider the case where the robot moves with vr (as fast as possible) to R(x),
and then estimate the probability of the object being there as well. We can
easily compute the time it takes the robot to reach any point at distance λr.
By defining a stochastic process for the movement of the object over the dis-
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tance λi from its current (estimated) position to R(x), we can compute the
probability that the object will be there when the robot arrives. We assume
the object’s velocity to be bounded by vi, but that the direction of motion
can change at each instant. The robot and object are considered to be at the
same location if they are within the same interval of size δ, which discretizes
space into grid cells.

We start by developing the co-occurrence estimation Pc,i in the one-
dimensional case, and then we reduce locations in the workspace W to this
1D formulation. Figure 6 shows the form of probability densities that we cal-
culate. Pc,i (1) has five terms that are switched on or off depending on the
robot and object speeds and reflect co-occurrences in different areas, namely
far-left, left, center, right and far-right.

Pc,i = Pc(λi, λr, vi, vr, δ) = pc,l + pc,ll + pc,m + pc,rr + pc,r (1)

where vr is the robot speed, vi the object speed, λi the distance to the object,
λr the distance to the robot, and δ the grid resolution.

Each individual pc represents an estimate for the partial co-occurrence
in one of the five different areas mentioned above. Equations (3)-(7) are the
expressions for these terms and the conditions under which they are non-zero.
The values of v1,2, N , and η are defined as:

v1,2 =
vr (λi ∓ δ)

2λr
, N =

⌈
λr

δ

⌉
, η =

N − 1
2Nv2

i

(2)

The bounds v1,2 govern the applicability of the individual terms below.
For each of the following equations, if the interval condition does not hold,
the corresponding pc = 0.

if (v1, v2) ∈ (−∞,−vi)× (−vi, 0) pc,l =
v1 + vi

vi
+ η

(
v2
1 − 2v2

i

)
(3)

if (v1, v2) ∈ (−vi, 0)× [−vi, 0) pc,ll =
v2 − v1

vi
+ η

(
v2
2 − 2v2

1

)
(4)

if (v1, v2) ∈ [−vi, 0)× [0, vi) pc,m =
v2 − v1

vi
− η

(
v2
2 + 2v2

1

)
(5)

if (v1, v2) ∈ [0, vi)× [0, vi) pc,rr =
v2 − v1

vi
− η

(
v2
2 − 2v2

1

)
(6)

if (v1, v2) ∈ [0, vi)× [vi,∞) pc,r =
vi − v2

vi
− η

(
v2

i − 2v2
2

)
(7)

In general, the robot may travel on arbitrary collision-free paths from one
point to another. Taking this into account would lead to an iterative approach
of path planning and estimating the co-occurrence probabilities. But such
a method is not only going to suffer from expensive computations, it may
also face non-trivial convergence issues. We avoid the need for iteration by
assuming that the robot will reach each point as fast as possible.
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Fig. 7. Processing flow inside the PNF. A-priori information and inputs are denoted
with cylinders, rectangles represent the various grid layers, big arrows denote E∗

operation, rounded boxes are other types computations. Note that C obstacles are
essentially binary maps of weighted regions that represent each object’s and the
robot’s C-space.

4.2 Risk Fusion and Planning

How can the co-occurrence information be used for path planning? The PNF is
based on a combination of co-occurrence probabilities estimated in workspace
W, which is then fused and transformed to configuration space C. The main
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contribution lies in the formulation of multiple layers of co-occurrence prob-
abilities, and how these are fused into a risk map representing all dynamic
objects as well as the environment topology. A flow diagram of the PNF al-
gorithm is given in figure 7:

1. The distance from each grid cell to the closest static object is computed
using E∗. The resulting distance map is denoted Ds

2. Ds is used to compute C-space obstacles for each dynamic object as well
as for the robot. Then, similarly to the first step, E∗ is invoked to calcu-
late the topologically correct distance maps Di to the current centers of
dynamic objects and Dr to the center of the robot.

3. The distance maps are transformed to values that can be fed into the one-
dimensional co-occurrence equations: the W-space transform computes
λi(x) = miny∈Ai(x) (Di(y)), which represents the distance of a point x to
the border of the dynamic object i, where Ai(x) denotes the object shape
placed at location x. λr is computed accordingly.

4. λi and λr are fed into equation (1) to yield dynamic object co-occurrence
maps, that is to say Pc,i for each object at each grid cell. Ds is similarly
transformed into the static co-occurrence map, after optionally applying
a buffer zone which can help to smooth the robot behavior close to walls.

5. Risk fusion is performed as PW
r = 1 −

∏
(1 − Pc) over the dynamic and

static co-occurrences in W-space, followed by P C
r = 1−

∏
(1− PW

r ) over
the robot shape to expand it to C-space. A tunable risk map (typically of
sigmoid form) is used to turn Pr into region weights.

6. Finally, E∗ is used again, this time to compute the navigation function,
taking into account the cell weights computed with the help of the risk
map. The resulting values are the Probabilistic Navigation Function.

5 Results

Figures 8(a) and 8(b) illustrate how PNF takes into account the environment
topology for each object individually, for example in a hallway where objects
can loom from rooms. The robot is the circle on the left, with a trace of gra-
dient descent towards the goal on the right. There is a moving object behind
the opening. The path is pushed into the free space in order to maximize the
distance from the door, but only if the object is actually small enough to fit
through. In this example, the robot speed is vr = 0.3, the object moves with
vi = 0.2. Figures 8(c) and 8(d) show the effect of adding an object that moves
with the same speed as the robot, in this case making the path switch topol-
ogy. Note the zero-risk zone around the robot (compare with figure 6(a)) and
the clear line between the robot and the second object in 8(d).

The various mappings in these figures are very smooth, which is a conse-
quence of the interpolation in E∗, and could not be achieved with any strictly
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(a) Pc,i: small object (b) Pc,i: big object

(c) Pr: vi = 2.5vr (d) Pr: vj = vr

Fig. 8. As shown in the two examples on the top, PNF takes into account the
environment topology individually for each object: When an object is too large
to fit through an opening, it cannot interfere with the robot trajectory. The two
examples on the bottom illustrate how different object speeds affect the trajectory,
and how the addition of a dynamic object can influence the topology of the chosen
path.

graph-based method. It has been shown in [13] that in the case of binary ob-
stacle information, E∗ produces navigation functions very close to the true Eu-
clidean distance (less than 10% error in typical indoor environments), whereas
non-interpolating graph planners distort the distances because of the discrete-
ness they impose on the motion choices of the robot. Interpolated dynamic
replanning can be done at relatively little extra cost compared to the strictly
graph-based D∗ [19]: the increase per operation is less than 40%, with fewer
than 65% increase in the number of operations.
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6 Conclusion and Outlook

The Probabilistic Navigation Function is an approach to on-line path planning
for a-priori unknown dynamic cluttered environments. It incorporates sensor-
based motion models into weighted region planning, using a probabilistic risk
map based on co-occurrences. The individual building blocks were designed
with on-line constraints in mind: incremental knowledge, frequent changes to
environmental information, adapting existing plans, and separating planning
from execution.

The finished components of the PNF are scan alignment, probabilistic colli-
sion risk estimation, and computation of the navigation function. Verifications
have been carried out via simulation. Ongoing work concerns integration and
testing on a real robot and implementation of higher-dimensional C-spaces.
Motion detection and ego-motion compensation were combined in the SLIP
algorithm to segment sensor data into static and dynamic objects. The dy-
namic information is used to predict future positions, taking into account the
available knowledge for each object and the static environment topology. E∗ is
used to plan with co-occurrence information. For execution, we rely on lower
level reactive obstacle avoidance guided by gradient descent, an interplay be-
tween planning and execution that has proven to perform well.
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