
E∗ Interpolated Graph Replanner

Roland Philippsen
Stanford University Robotics Laboratory

roland.philippsen@gmx.net

http://estar.sourceforge.net/

October 29, 2007

Abstract

The E∗ algorithm is a path planner which supports dy-
namic replanning and path cost interpolation, resulting in
lightweight repairing of plans and smooth paths during execu-
tion. Underlying E∗ is the interpretation of navigation func-
tions as the crossing-time map of an expanding continuous
surface whose propagation takes into account traversability.

Unlike A∗ which constrains movements to graph edges, E∗

produces smooth trajectories by interpolating between edges.
Like D∗ it supports dynamic replanning after local path cost
changes. Similarly to Field-D∗ it uses interpolation to ob-
tain smoothly varying values. However, E∗ interpolation is
user-configurable, and it performs full tracking of the upwind
dependency structure.

An open-source implementation of the algorithm is avail-
able on Sourceforge along with several test programs and ex-
amples of integration into robotic systems.

Introduction

• Classical computations of navigation functions [1,7] con-
strain movement to graph edges ⇒ impractical for path
execution. Potential fields [3] are smooth and continu-
ous, but can have local minima. Address root of prob-
lem [10,11] by considering navigation functions as a dis-
tance measure in the continuous domain: E∗ computes
samples of this distance by propagating through a graph
embedded in C-space [8], interpolating between edges to
assign monotonically increasing values to nodes.

• Environment information evolves ⇒ a planner must ef-
ficiently handle traversability changes. Purely graph-
based D∗ [5, 14] performs well, Field-D∗ [2] extends it
using somewhat ad-hoc hard-coded linear interpolation.
E∗ incorporates a similar capability of path repairs by
propagating changes out from changed locations, and ad-
ditionally supports a generic interpolation formulation
that allows user-defined kernels.

• Further reading: weighted region path planning [9, 12]
(trade-off movement cost against path length given
traversability that does not change), gradient method [6]
(alternative interpolation approach without path repairs
but fast enough to replan from scratch).

Features

Smoothness: A continuous-domain wavefront (closed sur-
face) propagates from the goal through the environment.
Modulate propagation speed in function of environment
characteristics. Record the front’s evolution ⇒ monoton-
ically increasing crossing-time map suitable for gradient
descent from any point to the goal.

Local repairs: the ever-expanding wavefront determines the
region of influence of each location ⇒ when subsequently
modified, we can skip recomputing those regions that
were never influenced by the modified location.
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Components

Representation: undirected graph G embedded in C-space.
Properties are attached to the nodes c ∈ G: (i) the
value v(c) ≥ 0 of the crossing-time map; (ii) the ef-
fort of traversing a configuration (encoded in the risk
r(c) ∈ [0, 1]); converted to (iii) meta information m(c)
to allow for different interpolation kernels; and (iv) the
rhs(c) is a one-step lookahead of the crossing time (see
D∗-Lite [5]).

Wavefront: queue of nodes that await expansion (value
propagation from a given node to its neighbors), ordered
by a key ensuring strictly upwind propagation order: key
= min(v(c), rhs(c)).

Upwind Graph: extension of the A∗ spanning tree to a di-
rected upwind graph U with unique edges (c1, c2) ∈ U ⇒
(c2, c1) /∈ U , encodes the nodes that were involved in
computing v(c) as well as the ones that were influenced
by v(c) similarly to the backpointers in D∗.

Generic Interpolation: a kernel (u, B) = k(c,Q) estimates
the crossing-time value of a node, based on the risk
of traversing it and the values of its neighbors: u is
the new value for node c, B ⊆ Q(c) is the set of
neighbors used in the computation of u, and Q(c) =
{n ∈ N(c) | v(n) < ∞} is the propagator which ensures
that only valid candidate neighbors N(c) are provided to
the kernel.

LSM Interpolation Kernel

The LSM kernel kLSM is an adaptation of the Fast March-
ing Level Set Method [4, 13] applicable when the C graph
G is a four-connected regular grid. In the 2D case this
leads to a quadratic expression that provides smooth, ro-
bust and lightweight interpolation. The LSM kernel maps
zero effort r(c) = 0 to the maximum propagation speed
m(c) = Fmax = 1, and obstacles r(c) = 1 to zero speed
m(c) = 0.

Open Source Implementation

E∗ is implemented in C++ and released under the GNU
General Public License on http://estar.sourceforge.net/
with access to the source code repository, mailing lists, docu-
mentation, and a Wiki.

Supported Operating Systems: all POSIX (Linux, BSD,
and other UNIX-like OSes). To a large extent, the code
is OS-independent and can easily be ported to other sys-
tems provided that the dependencies are available there
as well.

Dependencies: C++ Standard Library and Standard Tem-
plate Library, Boost Graph Library, Boost Smart Point-
ers, GNU Make, and optionally OpenGL, GLU, GLUT,
and Doxygen. The build system uses GNU Automake,
Libtool, and Autoconf (you usually do not need to in-
stall these, unless you want to use the development kit
that includes a simulator and some other mobile robotics
libraries).
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